

Agricultural Research Service

U.S. Dairy Forage Research Center

The Cover Crop Breeding Network

Lisa Kissing Kucek Plant Research Geneticist

December 2^{*nd*}, 2020

Environment

17 million acres of cover crops...

and rising

Data from USDA Ag Census 2017

Common Cover Crop Species

Figure modified from CTIC-SARE-ASTA 2020

Traits of Interest to Farmers

Hairy Vetch

Why Vetch? Highest biomass of winter legume cover crops

A single vetch plant can be huge photo by Jenyne Loarca

Why Vetch? Highest protein of winter legume cover crops

Why Vetch? Winter hardiness and drought tolerance

Incidence of total death among 43 U.S. site-years:

Hairy Vetch	Winter Pea	Crimson Clover
2%	10%	14%

Vetch Improvement The Organism

- 2n=14 (Chooi 1971)
- 2.04 Gbp (Macas et al. 2015)
- Genome assembly (Bickart et al. *in press*)
- 76% outcrossing calculated from 66 mothers and 14-16 progeny per mother among 7 environments

Vetch Improvement Breeding design

- 7 locations per year since 2017
 - 104 half-sibling lines with 24 space-planted progeny per nursery
 - Selection of best ~100
 - Crossing by bumblebee pollinators
 - Further selection for maturity, disease resistance, and seed yield
 - Best ~40 mothers within a site-year (2% selection intensity) form a line

Vetch Improvement Variety testing and release

- 14 nationwide U.S. locations
- ~20 breeding lines
- RCBD with 4 replicates
- One 15 ft row of legume surrounded by rows of triticale to simulate cover crop mixtures

Photo Taken by Evan Taylor at the NCDA Caswell Research Farm in Kinston

Vetch Improvement Seed yield

Photos from Mark Azevedo & Ryan Hayes, USDA-ARS Forage Seed & Cereal Research Unit

Vetch Improvement Heritability of traits

Calculated using an animal model with 2400 to 46000 genotypes among 36 site-years

Trait	Heritability
Fall vigor	0.25
Spring vigor	0.27
Flowering time	0.28
Determinacy	0.32
Hard seed	0.40
Pod dehiscence	0.38

Vetch Improvement Correlations: No major tradeoffs evident

	Fall vigor	Spring vigor	Maturity	Determ- inacy	Hard seed	Pod dehiscence
Fall vigor	1	0.61***	0.04**	0.07	-0.04*	-0.02
Spring vigor		1	-0.06***	-0.08*	-0.19***	-0.07***
Maturity			1	0.14***	0.16***	-0.33***
Determ- inacy				1	-0.17***	0.08*
Hard seed					1	-0.03
Pod dehiscence						1

Early Vigor

Vetch Improvement Hard seed

- 80 divergent half-sibling lines for extreme hard and soft seed
- 10 RCBD space-planted progeny at each of 2 locations
- Phenotyping of all plants for hard seed and shatter
- Genome by sequencing of 1120 individuals
- Genome wide association study

Vetch Improvement Pod dehiscence

Metric **Rating Scale**

Visual

0 = fully intact pod (no openings along Dehiscence sutures).

1 = one suture was partially opened (one side of pod),

2 = two sutures were partially opened (both sides of pod),

3 = pod had opened in full or partially

peak force (N) applied to create a break in the pod suture

0 = no spiraling of pod,

1 = some spiraling of pod,

2 = strong spiraling of pod

0

0

2

Corrugation

0 = smooth on the surface of the pod, 1 = intermediate, 2 = ridged on the surface of the pod seeds evident

Figure from Kissing Kucek et al. 2020 Frontiers in Plant Science

Variety Release

				7	
Hairy vetch entry	Broad adaptation (environments where top ranking for biomass)	Biomass	Fall vigor	Seed yield	Release priority
		- % of best che	eck		
17NC-Early	272	102	91	119	1
18MD	128	97	86	123	2
Albert Lea Organic VNS	0	62	62	86	Check
UMN 'Minnesota Vinter'	25	78	63	71	Check
AU Early Cover	0	59	59	88	Check
AU Merit	100	100	100	100	Check
Hungvillosa	56	73	73	110	Check
Purple Bounty	24	68	68	98	Check

Vetch Improvement Bruchid beetles

Vetch Improvement Vetch associated disease

Kamo et al. 2003 J Chem Ecol. Image from Cacycle (2009)

Image from Aguirre et al. 2021 Toxicon

Cover Crop Variety Database

CURRENTLY SEEKING COLLABORATORS AND CONTRIBUTORS!

Start with where is your farm?

Missouri
Adair

#1 goal

Collaborators and Funders

Project Directors	Kerry Clark	University of Nebraska		
Virginia Moore	Maria Monteros	USDA-ARS Dairy Forage Research Center		
Steven Mirsky	Katherine Muller	USDA-ARS Forage Seed and Cereal		
Chris Reberg-Horton	Rob Myers	Kesearch Unit		
Gerald Smith	Sarah Carlson	OSDA-ARS Grain Legume Genetics Physiology Research		
Heathcliffe Riday	Suresh Bhamidimarri	USDA-ARS Northern Great Plains		
John Englert	Twain Butler	Research Laboratory		
Jude Maul		USDA-ARS Sustainable Agricultural Systems Lab		
Laurie Drinkwater	Students	USDA-ARS Western Regional Plant		
Matthew Ryan	Lais Bastos Martins	Introduction Station		
Nancy Ehlke	Nick Wearing	USDA-NRCS Plant Materials Centers		
Rachel Atwell Vann	Shannon Koss			
Rebecca McGee		Funders		
Ryan Hayes	Institutions	USDA Organic Research and Education Initiative (OREI)		
	Cornell University			
Collaborators	Noble Research Institute	Sciences Program		
Brian Irish	North Carolina State University	Foundation for Food and Agriculture Research (FFAR)		
Clarice Coyne	Practical Farmers of Iowa			
David Archer	Texas A&M University	Development (EWD)		
Joel Douglas	University of Minnesota	Noble Research Institute		

University of Missouri

John Guretzky

www.covercropbreeding.com